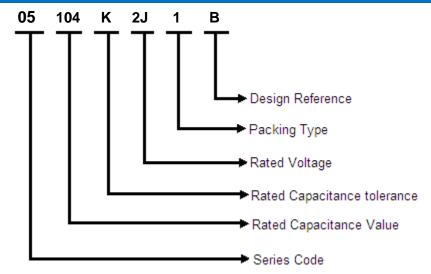
COMPONENT SPECIFICATION

SERIES NAME AC & Pulse Metallized Polypropylene Film Capacitors

(PP-MMPP Dip Type)

DEKI SERIES NO. 05



GIVEN BY: DEKI ELECTRONICS LTD

DEKI ELECTRONICS LTD

B-20, SECTOR-58, NOIDA 201301 Tel: +91 120 2585457/58 • Fax: +91 120 2585289 • Email: rd@dekielectronics.com

Part Number Descriptions

Three-digit (104) indicate rated capacitance in Pico Farad (First two digits indicate value & third digit indicates number of zeroes to be suffixed to first two digits).

For example:

Capacitance Tolerance

In 3rd group of the part number-

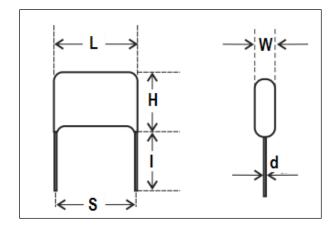
 $F = \pm 1\%$, $G = \pm 2\%$, $H = \pm 2.5\%$, $I = \pm 3.5\%$, $J = \pm 5\%$, $K = \pm 10\%$, $L = \pm 15\%$, $M = \pm 20\%$, $N = \pm 40\%$

Rated Voltage

In 4th group of the part number, one numeric digit and one letter (Ex. 2J) indicate DC voltage rating while two numeric digits (Ex.06) indicate AC voltage rating.

Rated Voltage Codification

For DC Rated Voltage													
Α		В		С		D		Е		F		G	
1A	10	1B	12.5	1C	16	1D	20	1E	25	1F	30	1G	40
2A	100	2B	125	2C	160	2D	200	2E	250	2F	300	2G	400
3A	1000	3B	1250	3C	1600	3D	2000	3E	2500	3F	3000	3G	4000
H	Н			J		K		L		M		N	
1H	50	11	45	1J	63	1K	70	1L	80	1M	85	1N	90
2H	500	21	450	2J	630	2K	700	2L	800	2M	850	2N	900
3H	5000	31	4500	3J	6300	3K	7000	3L	8000	3M	8500	3N	9000
C	Ö			Q		R		S		T		U	
10	110	1P	120	1Q	57.5	1R	15	1S	17	1T	70	1U	130
20	1100	2P	1200	2Q	575	2R	150	2S	170	2T	700	2U	1300
30	11000	3P	12000	3Q	5750	3R	1500	3S	1700	3T	70000	3U	13000
For AC Rated Voltage													
01	02	03	04	05	06	07	08	09	10	11	12	13	14
190	250	275	305	310	440	500	600	700	63	230	330	400	450
VAC	VAC	VAC	VAC	VAC	VAC	VAC	VAC	VAC	VAC	VAC	VAC	VAC	VAC


Packing Type

- 1: Bulk packing (original pitch)
- 2: Bulk packing (after forming & cutting)
- 3: Ammo packing (after forming & taping)
- 4: Bulk packing (after forming in original pitch without cut)
- 5: Bulk packing (after formed & without cut)
- 6: Ammo packing (Straight lead)
- 7: Bulk packing (Straight lead cut)
- 8: Reel packing (Straight lead)

Reference Data

Capacitance	0.0001μF to 0.15μF
Capacitance Tolerance	±5% to ±10%
Rated DC Voltage	630Vdc to 2000Vdc
Permissible rated AC voltage	400Vac to 700 Vac
Climatic testing class according to IEC 60068-1	40/100/56
Maximum application temperature	100°C
Rated temperature	85°C for rated DC voltage and 75°C for rated AC voltage
Reference standard	IEC 60384-16 & IEC 60384-17
Dielectric	Polypropylene
Electrodes	Aluminium foil
Construction	Series
Encapsulation	Coated with flame retardant epoxy powder
Leads	Tinned wire
Marking Example	Type of capacitor, rated capacitance, rated tolerance and rated voltage will be available on each and every capacitor. Example- PP-MMPP D105J3D
Compatibility to RoHS	RoHS

Dimension Description

Rated Voltage	Cap. in µF	W (Max)	H (Max)	L (Max)	S (±1.0)	d (±0.05)	l (Min.)	Item Code
4050\/D0	· ·	0.5						05 000 K 0D 0 D
1250VDC	0.022	6.5	18.5	26.0	21.5	0.6	3.5±0.5	05 223 K 3B 2 B
1600VDC	0.005	7.5	15.5	26.0	22.5	0.8	5.0±1.0	05 502 K 3C 7 A
	0.0082	8.5	18.0	26.0	22.5	0.8	17.0	05 822 J 3C 1 A
	0.0082	8.5	18.0	26.0	22.5	0.8	17.0	05 822 J 3C 1 B
	0.0082 0.0082	7.5 8.5	15.0 22.0	26.0 26.0	22.5 22.5	0.8	17.0	05 822 J 3C 1 C
	0.0082	10.0					5.0±1.0 17.0	05 822 J 3C 2 A
	0.010	10.0	19.0 19.0	26.0 26.0	22.5 22.5	0.8	17.0	05 103 J 3C 1 A 05 103 K 3C 1 A
	0.010	10.0	19.0	26.0	22.5	0.8	5.0±1.0	05 103 K 3C 7 A
2000VDC	0.010	7.5	14.0	26.0	22.5	0.8	17.0	05 103 K 3C 7 A
2000 V D C	0.0010	7.5 7.5	14.0	26.0	22.5	0.8	17.0	05 152 J 3D 1 A
	0.0013	8.0	14.0	26.0	22.5	0.8	17.0	05 182 J 3D 1 A
	0.0018	12.5	25.0	26.0	22.5	0.8	14.0	05 183 J 3D 4 L
	0.0018	7.5	14.0	26.0	22.5	0.8	17.0	05 163 J 3D 4 L 05 222 J 3D 1 A
	0.0022	7.5 7.5	14.0	26.0	22.5	0.8	5.0±1.0	05 222 J 3D 7 A
	0.0022	8.0	14.0	26.0	22.5	0.8	17.0	05 272 J 3D 1 A
	0.0027	7.0	15.5	26.0	22.5	0.8	17.0	05 332 J 3D 1 A
	0.0033	7.0	15.5	26.0	22.5	0.8	17.0	05 392 J 3D 1 A
	0.0039	7.0 7.5	16.5	26.0	22.5	0.8	17.0	05 472 J 3D 1 A
	0.0047	8.0	16.0	26.0	22.5	0.8	17.0	05 472 J 3D 1 B
					22.5			05 472 K 3D 1 B
	0.0047 0.0051	8.0 7.0	16.0 16.0	26.0 26.0	22.5	0.8	17.0 17.0	05 472 K 3D 1 B
							17.0	05 562 J 3D 1 A
	0.0056	8.0	15.0	26.0	22.5	0.8		05 562 J 3D 7 B
	0.0056	8.5 8.0	18.0 15.0	26.0 26.0	22.5 22.5	0.8	10.0±1.0 17.0	05 562 K 3D 1 A
	0.0056 0.0062	9.0	14.0			0.8	17.0	05 622 J 3D 1 A
	0.0062	8.0	15.0	26.0 26.0	22.5 22.5	0.8	17.0	05 622 J 3D 1 A
	0.0062	9.0	18.0	26.0	20.0	0.8	14.0	05 622 J 3D 1 B
	0.0062	9.0	18.0	26.0	15.0	0.8	5.0±1.0	05 662 I 3D 2 A
	0.0062	9.0	17.5	26.0	22.5	0.8	17.0	05 682 J 3D 1 A
	0.0008	9.0	17.5	26.0	22.5	0.8	17.0	05 722 J 3D 1 A
	0.0072	9.0 8.5	21.0	26.0	22.5	0.8	17.0	05 722 J 3D 1 A
	0.0072	9.0	17.5	26.0	22.5	0.8	17.0	05 722 J 3D 1 D
	0.0072	8.5	16.0	26.0	22.5	0.8	3.0±0.5	05 722 J 3D 1 D
	0.0072	9.0	22.0	26.0	22.5	0.8	5.0±0.5 5.0±1.0	05 722 J 3D 2 D
	0.0072	9.0	22.0	26.0	22.5	0.8	3.0±1.0	05 722 J 3D 2 E
	0.0072	10.5	19.0	26.0	22.5	0.8	17.0	05 103 J 3D 1 A
	0.010	10.0	19.5	26.0	22.5	0.8	17.0	05 103 J 3D 1 B
	0.010	10.0	24.0	26.0	22.5	0.8	5.0±1.0	05 103 J 3D 2 A
	0.012	10.0	20.0	26.0	22.5	0.8	17.0	05 123 J 3D 1 A
	0.012	10.0	21.0	26.0	15.0	0.8	5.0±1.0	05 123 J 3D 2 A
	0.012	12.0	23.0	26.0	15.0	0.8	5.0±1.0	05 133 J 3D 2 B
	0.015	12.0	20.0	26.0	22.5	0.8	17.0	05 153 J 3D 1 A
	0.015	11.0	24.0	26.0	20.0	0.8	14.0	05 153 J 3D 4 L
	0.013	15.0	23.0	25.0	22.5	0.8	17.0	05 203 J 3D 1 A
	0.020	15.0	24.0	26.0	22.5	0.8	17.0	05 223 J 3D 1 A
	0.020	14.0	23.0	31.0	27.5	0.8	17.0	05 273 J 3D 1 A
	0.027	16.0	25.0	31.0	27.5	0.8	17.0	05 333 J 3D 1 A
	0.000	10.0	20.0	51.0	21.5	0.0	17.0	00 000 0 0D 1 A

0.047	14.0	24.0	42.0	37.5	8.0	17.0	05 473 J 3D 1 A
0.047	17.0	26.0	31.0	27.5	8.0	17.0	05 473 K 3D 1 B
0.047	17.0	30.0	31.0	22.5	8.0	5.0±1.0	05 473 K 3D 2 B
0.047	17.0	30.0	31.0	22.5	8.0	17.0	05 473 K 3D 5 B
0.068	16.0	26.0	42.0	37.5	8.0	17.0	05 683 J 3D 1 A

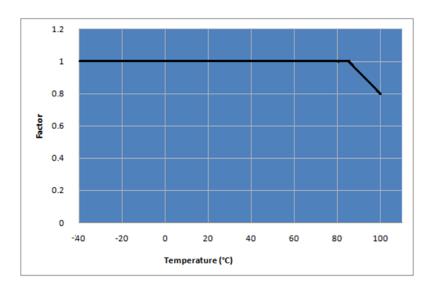
^{*}All dimension in mm

Specific Data

Description	Value			
Maximum tangent of loss angle (Tanδ)	Frequency	C _R ≤0.1µF	0.1μF <c<sub>R≤1μF</c<sub>	C _R >1µF
	1 kHz	0.0008	0.0008	0.001
	10 kHz	0.0015	0.0025	-
	100 kHz	0.0050	-	-
Voltage proof test between leads	1.6 times of the	rated DC voltage	for 2 second	
Insulation Resistance (R _{IS})	C _R ≤0.33µF	C _R >0.33µF		
(or) time constant $T = C_R \times R_{IS}$	≥100000MΩ	≥30000 s		
at 25° C. relative humidity ≤70%				

Endurance Test

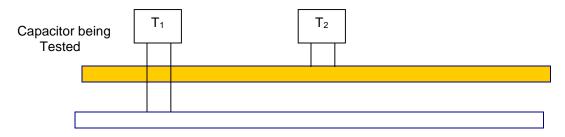
Loaded at 1.25 times of rated voltage at 85°C for 1000 hours.


After The Test

 Δ C/C : \leq 10% of initial value. Increase of Tan δ : \leq 0.005 at 100 kHz

Insulation resistance : \geq 50% of the value mentioned in specific data.

Temperature Derating Graph


For temperature between 85°C and 100°C a decreasing factor of 1.25% per °C on the rated voltage V_R has to be applied

Power Dissipation and Maximum Component Temperature Rise

After applying the A.C voltage to the capacitor with certain frequency, we can measure the hot spot temperature of the capacitor. From that we can calculate ΔT .

 ΔT = hot spot temperature – ambient temperature

- T₁ is the capacitor under test (Connected in the circuit)
- T₂ is capacitor which has no connection

Distance between T_1 and T_2 should be about 50mm and 100mm from other components. To avoid radiation or convection, the capacitor should be tested in a wind-free box. The capacitor under test is separated by polysteryrene.

$$\Delta T_{\text{max}} = T_1 - T_2$$

at one frequency level the ΔT_{max} reach 10°C. That is the frequency which we have to start frequency derating

Storage Conditions

Avoid storing the capacitors in places where the environmental conditions differ from the following:

- Storage time: ≤ 24 months from the date marked on the label glued to the package.
- Temperature: -40 to 80°C
- Humidity:

- Average per year: ≤70%

- For 30 full days randomly distributed throughout the year: ≤85%

- Dew: absent

After a longer period of storage or use, the tolerance can increase; but, according to standard specification, it may never exceed twice the value measured at the time of delivery.

Disclaimer

All our capacitors are designed, manufactured and tested to specifications. We strictly adhere to standards in procurement of materials, in the laid

down manufacturing processes and consistently apply stringent process controls and testing parameters. This ensures that our capacitors always

perform to the offered specifications.

Appropriateness of use in a specific circuit and fitness to a particular application however needs to be verified and its reliability through expected lifetime is required to be validated by the customer. Deki's responsibility is limited to ensuring that the capacitor performs as claimed in the specification/ data sheets provided by Deki. Deki specifically disclaims any implied warranties of fitness for any particular purpose. Liability, in any case is limited to the price paid for the capacitors.